Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.29.23296330

ABSTRACT

Background The protection of fourth dose mRNA vaccination against SARS-CoV-2 is relevant to current global policy decisions regarding ongoing booster roll-out. We estimate the effect of fourth dose vaccination, prior infection, and duration of PCR positivity in a highly-vaccinated and largely prior-COVID-19 infected cohort of UK healthcare workers. Methods Participants underwent fortnightly PCR and regular antibody testing for SARS-CoV-2 and completed symptoms questionnaires. A multi-state model was used to estimate vaccine effectiveness (VE) against infection from a fourth dose compared to a waned third dose, with protection from prior infection and duration of PCR positivity jointly estimated. Results 1,298 infections were detected among 9,560 individuals under active follow-up between September 2022 and March 2023. Compared to a waned third dose, fourth dose VE was 13.1% (95%CI 0.9 to 23.8) overall; 24.0% (95%CI 8.5 to 36.8) in the first two months post-vaccination, reducing to 10.3% (95%CI -11.4 to 27.8) and 1.7% (95%CI -17.0 to 17.4) at 2-4 and 4-6 months, respectively. Relative to an infection >2 years ago and controlling for vaccination, 63.6% (95%CI 46.9 to 75.0) and 29.1% (95%CI 3.8 to 43.1) greater protection against infection was estimated for an infection within the past 0-6, and 6-12 months, respectively. A fourth dose was associated with greater protection against asymptomatic infection than symptomatic infection, whilst prior infection independently provided more protection against symptomatic infection, particularly if the infection had occurred within the previous 6 months. Duration of PCR positivity was significantly lower for asymptomatic compared to symptomatic infection. Conclusions Despite rapid waning of protection, vaccine boosters remain an important tool in responding to the dynamic COVID-19 landscape; boosting population immunity in advance of periods of anticipated pressure, such as surging infection rates or emerging variants of concern. Funding UK Health Security Agency, Medical Research Council, NIHR HPRU Oxford, and others.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.22.23290197

ABSTRACT

Third doses of COVID-19 vaccines were widely deployed following primary vaccine course waning and emergence of the Omicron-variant. We investigated protection from third-dose vaccines and previous infection against SARS-CoV-2 infection during Delta-variant and Omicron-variant (BA.1 & BA.2) waves in our frequently PCR-tested cohort of healthcare-workers. Relative effectiveness of BNT162b2 third doses and infection-acquired immunity was assessed by comparing the time to PCR-confirmed infection in boosted participants with those with waned dose-2 protection ([≥]254 days after dose-2). Follow-up time was divided by dominant circulating variant: Delta 07 September 2021 to 30 November 2021, Omicron 13 December 2021 to 28 February 2022. We used a Cox regression model with adjustment/stratification for demographic characteristics and staff-type. We explored protection associated with vaccination, infection and both. We included 19,614 participants, 29% previously infected. There were 278 primary infections (4 per 10,000 person-days of follow-up) and 85 reinfections (0.8/10,000 person-days) during the Delta period and 2467 primary infections (43/10,000 person-days) and 881 reinfections (33/10,000) during the Omicron period. Relative Vaccine Effectiveness (VE) 0-2 months post-3rd dose (V3) (3-doses BNT162b2) in the previously uninfected cohort against Delta infections was 63% (95% Confidence Interval (CI) 40%-77%) and was lower (35%) against Omicron infection (95% CI 21%-47%). For primary course ChAdOX1 recipients, BNT162b2 heterologous third doses were especially effective, with VE 0-2 months post-V3 over [≥]68% higher for both variants. Third-dose protection waned rapidly against Omicron, with no significant difference between two and three BNT162b2 doses observed after 4-months. Previous infection continued to provide additional protection against Omicron (67% (CI 56%-75%) 3-6 months post-infection), but this waned to about 25% after 9-months, approximately three times lower than against Delta. Infection rates surged with Omicron emergence. Third doses of BNT162b2 vaccine provided short-term protection, with rapid waning against Omicron infections. Protection associated with infections incurred before Omicron was markedly diminished against the Omicron wave. Our findings demonstrate the complexity of an evolving pandemic with potential emergence of immune-escape variants and the importance of continued monitoring.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.21.22274025

ABSTRACT

Background: Understanding immunological responses to SARS-CoV-2 vaccinations is integral to the management of SARS-CoV-2. We aimed to investigate determinants of antibody response to the BNT162b2 vaccine. Methods: A cross-sectional analysis of anti-spike binding antibodies in serum samples from healthcare workers after one or two doses. Post-vaccination interval was restricted to [≥]21 days after dose 1, [≥]14 days after dose 2. The primary outcome was anti-S titres with explanatory variables dose, previous infection, dosing interval, age, ethnicity, and comorbidities. Multivariable linear regression was also conducted. Results: Participants (n=5,871) included 3,989 post-dose 1, 1,882 post-dose 2. In SARS-CoV-2 infection naive, 99.65% seroconverted after dose 1 and >99.9% seroconverted after dose 2. Geometric mean anti-S titre in the naive cohort was 75.48 Binding Antibody Units/ml after dose 1, 7,049 BAU/ml after dose 2. Anti-S titres were higher in those with previous infection (2,111 BAU/ml post-dose 1, 16,052 BAU/ml post-dose 2), and increased with time between infection and vaccination: 3 months 1,970 (1,506-2,579) vs 9 months; 13,759 (8,097-23,379). Longer dosing intervals increased antibody response post-dose 2: 11-fold higher with a longer interval (>10 weeks) than those with shorter intervals, across all age-groups. Younger participants had higher mean titres (>2.2-fold higher). Multivariable regression modelling corroborated the above associations, and also found higher titres associated with being female or from an ethnic minority but lower titres among immunocompromised participants. Conclusion: The number of antigen exposures and timing between vaccinations plays a significant role in the magnitude of the post-vaccination antibody response, with implications for long-term protection and post-booster antibody responses.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.29.21267006

ABSTRACT

BackgroundUnderstanding the duration and effectiveness of infection and vaccine-acquired SARS-CoV-2 immunity is essential to inform pandemic policy interventions, including the timing of vaccine-boosters. We investigated this in our large prospective cohort of UK healthcare workers undergoing routine asymptomatic PCR testing. MethodsWe assessed vaccine effectiveness (VE) (up to 10-months after first dose) and infection-acquired immunity by comparing time to PCR-confirmed infection in vaccinated and unvaccinated individuals using a Cox regression-model, adjusted by prior SARS-CoV-2 infection status, vaccine-manufacturer/dosing-interval, demographics and workplace exposures. ResultsOf 35,768 participants, 27% (n=9,488) had a prior SARS-CoV-2 infection. Vaccine coverage was high: 97% had two-doses (79% BNT162b2 long-interval, 8% BNT162b2 short-interval, 8% ChAdOx1). There were 2,747 primary infections and 210 reinfections between 07/12/2020 and 21/09/2021. Adjusted VE (aVE) decreased from 81% (95% CI 68%-89%) 14-73 days after dose-2 to 46% (95% CI 22%-63%) >6-months; with no significant difference for short-interval BNT162b2 but significantly lower aVE (50% (95% CI 18%-70%) 14-73 days after dose-2 from ChAdOx1. Protection from infection-acquired immunity showed evidence of waning in unvaccinated follow-up but remained consistently over 90% in those who received two doses of vaccine, even in those infected over 15-months ago. ConclusionTwo doses of BNT162b2 vaccination induce high short-term protection to SARS-CoV-2 infection, which wanes significantly after six months. Infection-acquired immunity boosted with vaccination remains high over a year after infection. Boosters will be essential to maintain protection in vaccinees who have not had primary infection to reduce infection and transmission in this population. Trial registration numberISRCTN11041050


Subject(s)
COVID-19
5.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3790399

ABSTRACT

Background: BNT162b2 mRNA and ChAdOx1 nCOV-19 adenoviral vector vaccines have been rapidly rolled out in the UK. We determined the factors associated with vaccine coverage for both vaccines and documented the vaccine effectiveness of the BNT162b2 mRNA vaccine in our healthcare worker (HCW) cohort study of staff undergoing regular asymptomatic testing.Methods: The SIREN study is a prospective cohort study among staff working in publicly funded hospitals. Baseline risk factors, vaccination status (from 8/12/2020-5/2/2021), and symptoms are recorded at 2 weekly intervals and all SARS-CoV-2 polymerase chain reaction (PCR) and antibody test results documented. A mixed effect proportional hazards frailty model using a Poisson distribution was used to calculate hazard ratios to compare time to infection in unvaccinated and vaccinated participants to estimate the impact of the BNT162b2 vaccine on all (asymptomatic and symptomatic) infection.Findings: Vaccine coverage was 89% on 5/2/2021. Significantly lower coverage was associated with prior infection (aOR 0.59 95% confidence interval [CI] 0.54-0.64), female (aOR 0.72, 95% CI 0.63-0.82), aged under 35 years, being from minority ethnic groups (especially Black, aOR 0.26, 95% CI 0.21-0.32), porters/security guards (aOR 0.61, 95% CI 0.42-0.90),or midwife (aOR 0.74, 95% CI 0.57-0.97), and living in more deprived neighbourhoods (IMD 1 (most) vs. 5 (least) (aOR 0.75, 95% CI 0.65-0.87). A single dose of BNT162b2 vaccine demonstrated vaccine effectiveness of 72% (95% CI 58-86) 21 days after first dose and 86% (95% CI 76-97) seven days after two doses in the antibody negative cohort.Conclusion: Our study demonstrates that the BNT162b2 vaccine effectively prevents both symptomatic and asymptomatic infection in working age adults; this cohort was vaccinated when the dominant variant in circulation was B1.1.7 and demonstrates effectiveness against this variant.Trial Registration: IRAS ID 284460, REC reference 20/SC/0230 Berkshire Research Ethics Committee, Health Research Authority and Health and Care Research Wales approval granted 22 May 2020. Trial registered with ISRCTN, Trial ID: ISRCTN11041050. https://www.isrctn.com/ISRCTN11041050Funding: The study is funded by the United Kingdom’s Department of Health and Social Care and Public Health England, with contributions from the Scottish, Welsh and Northern Irish governments. Funding is also provided by the National Institute for Health Research (NIHR) as an Urgent Public Health Priority Study (UPHP). SH, VH are supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with Public Health England (PHE) (NIHR200915). AC is supported by NIHR HealthProtection Research Unit in Behavioural Science and Evaluation at University of Bristol in partnership with Public Health England. MR, NA, AC are supported by NIHR HealthProtection Research Unit in Immunisation at the London School of Hygiene and Tropical Medicine in partnership with Public Health England.Conflict of Interest: The Immunisation and Countermeasures Division has provided vaccine manufacturers(including Pfizer) with post-marketing surveillance reports on pneumococcal andmeningococcal infection which the companies are required to submit to the UK Licensing authority in compliance with their Risk Management Strategy. A cost recovery charge is made for these reports.Ethical Approval: The study was approved by the Berkshire Research Ethics Committee, Health Research Authority (IRAS ID 284460, REC reference 20/SC/0230) on 22 May 2020; the vaccine amendment was approved on 12/1/2021.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.13.21249642

ABSTRACT

BackgroundThere is an urgent need to better understand whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection. MethodsA large multi-centre prospective cohort was recruited from publicly funded hospital staff in the UK. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed fortnightly questionnaires on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive or prior PCR/antibody test positive) or negative cohort (antibody negative, not previously known to be PCR/antibody positive). Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, possible (subdivided by symptom-status)) depending on hierarchy of evidence. Individuals in the primary infection were excluded from this analysis if infection was confirmed by antibody only. Reinfection rates in the positive cohort were compared against new PCR positives in the negative cohort using a mixed effective multivariable logistic regression analysis. FindingsBetween 18 June and 09 November 2020, 44 reinfections (2 probable, 42 possible) were detected in the baseline positive cohort of 6,614 participants, collectively contributing 1,339,078 days of follow-up. This compares with 318 new PCR positive infections and 94 antibody seroconversions in the negative cohort of 14,173 participants, contributing 1,868,646 days of follow-up. The incidence density per 100,000 person days between June and November 2020 was 3.3 reinfections in the positive cohort, compared with 22.4 new PCR confirmed infections in the negative cohort. The adjusted odds ratio was 0.17 for all reinfections (95% CI 0.13-0.24) compared to PCR confirmed primary infections. The median interval between primary infection and reinfection was over 160 days. InterpretationA prior history of SARS-CoV-2 infection was associated with an 83% lower risk of infection, with median protective effect observed five months following primary infection. This is the minimum likely effect as seroconversions were not included. FundingDepartment of Health and Social Care and Public Health England, with contributions from the Scottish, Welsh and Northern Irish governments.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL